Section 5: Applications

The capital city of Ontario is ____

Toronto, which is known for ...

What are the tasks?

Toronto

Open-domain QA

What are the tasks?

Fact verification

Question Answering

RETRO (Borgeaud et al., 2021)

REALM (Gu et al, 2020)

ATLAS (Izacard et al, 2023)

Fact RAG (L

ATLAS (Izacard et al, 2022)

Evi. Generator (Asai et al, 2022)

Retrieval-based LMs have been extensively evaluated on knowledge-intensive tasks

Fact verification

RAG (Lewis et al, 2020)

Dialogue

BlenderBot3 (Shuster et al., 2022)

Internet-augmented generation (Komeili et a., 2022)

More general NLP tasks

More generations

Question answering

RETRO (Borgeaud et al., 2021)

REALM (Gu et al, 2020)

ATLAS (Izacard et al, 2023)

Summarization

FLARE (Jiang et al, 2023)

RAG (Lewis et al, 2020)

ATLAS (Izacard et al, 2022)

Evi. Generator (Asai et al, 2022)

Machine translation kNN-MT (Khandelwal et al., 2020) TRIME-MT (Zhong et al., 2022)

NLI

kNN-Prompt (Shi et al., 2022) NPM (Min et al., 2023)

Fact verification

Dialogue

BlenderBot3 (Shuster et al., 2022) Internet-augmented generation (Komeili et a., 2022)

Code & proof generation

DocPrompting (Zhou et al., 2023)

Natural Prover (Welleck et al., 2022)

Sentiment analysis

kNN-Prompt (Shi et al., 2022) NPM (Min et al., 2023)

Commonsense reasoning

Raco (Yu et al, 2022)

More classifications

Two key questions for downstream adaptations

How can we adapt a retrieval-based LM for a task?

When should we use a retrieval-based LM?

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- Sentiment analysis
- Code generation

. . .

	How 1
-	Fine-tu
_	Reinfor
_	Prompt

to adapt?

ining rcement learning ting

Fine-tuning (+RL)

Training LM and / or retriever on task-data & data store

Fine-tuning (+RL)

Training LM and / or retriever on task-data & data store

Prompting

Prompt a frozen LM with retrieved knowledge

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- Sentiment analysis
- Code generation

. . .

- Fine-tuning
- Prompting

How to adapt?

- Reinforcement learning

Long-tail

knowledge update

When to use a retrieval-based LM

Verifiability

Parameterefficiency

Long-tail

knowledge update

Q: Is Toronto really cold during winter?

Verifiability

Parameterefficiency

LM

Long-tail

knowledge update

Q: Where is Toronto Zoo located?

Verifiability

Parameterefficiency

<u>**1361A</u> Old Finch Avenue, in Scarborough, Ontario**</u>

Long-tail

knowledge update

Q: Where is Toronto Zoo located?

Toronto zoo Info Location: 361A Old Finch Avenue, Toronto, Ontario Land Area: 287 hectares

Long-tail

Knowledge update

Q: What is the population of Toronto Metropolitan area in 2023?

Long-tail Knowledge update

Q: What is the population of Toronto Metropolitan area in 2023?

Collected in 2023

Parameterefficiency

Trained on the **2021** corpus

A: 6,372,000

Long-tail

knowledge update

Q: Where is Toronto Zoo located?

Verifiability

Parameterefficiency

LM in

361A Old Finch Avenue, in Scarborough, Ontario

Toronto zoo Info Location: 361A Old Finch Avenue, Toronto, Ontario Land Area: 287 hectares

Long-tail

knowledge update

Verifiability

Parameterefficiency

Two key questions for downstream adaptations

How can we adapt a retrieval-based LM for a task?

When should we use a retrieval-based LM?

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- General NLU
- Language Modeling & other generation tasks

What is data store?

- Unlabeled Wikipedia / CC
- Web (Google / Bing Search Results)
- Training data

Adapting retrieval-based LMs for tasks

Fine-tuning

Training LM and / or retriever on task-data & data store

Adapting retrieval-based LMs for tasks

Fine-tuning

Training LM and / or retriever on task-data & data store

. . .

Independent training (DPR) Asynchronous updates (REALM)

Izacard et al. 2022. "Few-shot learning with retrieval augmented language models"

ATLAS (Izacard et al., 2022; Section 4)

ATLAS: Fixed retrieval with fine-tuned LM

ATLAS: Query-side fine-tuning Input *x* Few-shot task data (e.g., k=64) ()LM (x_i^{QA}, y_i^{QA}) QA Fact (x_i^{FV}, y_i^{FV}) verification Docs Z (x_i^{dial}, y_i^{dial}) Dialogue Output y

Ablations of efficient retrieval training

Fixed FT shows large performance drop on QA.

Ablations of efficient retrieval training

Query-side fine-tuning matches or outperforms full fine-tuning

ATLAS: Few-shot v.s. full v.s. transfer setups

Kwiatkowski et al. 2019. "Natural Questions: A Benchmark for Question Answering Research" Hendrycks et al. 2021. "Measuring Massive Multitask Language Understanding"

Task results

On QA, ATLAS largely outperforms other LLMs in few-shot

Chinchilla (70B) ATLAS (Few; 11B) ATLAS (Full; 11B)

Task results

Full-shot fine-tuning further improves performance

Chinchilla (70B) ATLAS (Few; 11B) ATLAS (Full; 11B)

MMLU (Multiple-choice NLU benchmark)

Task results

On MMLU, ATLAS few-shot largely underperforms Chinchilla / GPT-4.

Room for improvements for diverse

MMLU (Multiple-choice NLU benchmark)

Task results

Transferring from relevant tasks give large improvements, matching Chinchilla

Target task

ATLAS (Izacard et al., 2022)

ne-tuning for QA & ki

Fine-tuning for QA & knowledge-intensive tasks often gives strong performance (even in few-shot)

Adaptation method

Datastore

Knowledge-intensive

Fine-tuning (Retriever & LM)

Wikipedia | CC

Fine-tuning a retriever for a task matters!

Downstream adaptation of retrieval-based LMs

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- General NLU
- Language Modeling & other generation tasks

What is data store?

- Unlabeled Wikipedia / CC
- Web (Google / Bing Search Results)
- Training data

40

GopherCite (Menick et al., 2022)

Menick et al. 2022. "GopherCite: Teaching language models to support answers with verified quotes"

GopherCite (Menick et al., 2022)

What kind of animal is Scooby from Scooby Doo?

GopherCite

<u>A Great Dane dog.</u>

Wikipedia Page: Scooby-Doo This Saturday-morning cartoon series featured teenagers Fred Jones, Daphne Blake, Velma Dinkley, and Shaggy Rogers, and their talking Great Dane named Scooby-Doo.

Menick et al. 2022. "GopherCite: Teaching language models to support answers with verified quotes"

Extract and generate a quote to support an answer

→ y₁

Supervised fine-tuning (SFT)

43

Supervised fine-tuning (SFT)

Model generated training data filtered by human

%<Claim>%(Document title)%[Quote from document]%

(x, y)

Reinforcement Learning with human feedback (e.g., Instruct GPT)

45

33k Human preference data

Human rater

Supported by accompanying evidence

 (x, y^1, y^2, r)

46

 $r \in y_1, y_2$

Effects of RL

(S&P = Supported & Plausible)

RL w/ human feedback improves the quality of top I generations

47

Effects of RL

Sampling & reranking many generations using a reward model gives gains from Top 1

RL (best 1) FT (best 1) **FT** (best 64) **RL** (best 64)

	Targettask
ATLAS (Izacard et al., 2022)	Knowledge-intensiv
GopherCite (Menick et al., 2022), also WebGPT (Nakano et al., 2021)	Open-domain QA Long-form QA

Benefit of **fine-tuning**

49

	Target task
ATLAS (Izacard et al., 2022)	Knowledge-intensiv
GopherCite (Menick et al., 2022), also WebGPT (Nakano et al., 2021)	Open-domain QA Long-form QA

Benefit of **RL**

Better alignment with user preferences

Requiring additional data collection (preference)

50

		Targettask
ļ	ATLAS (Izacard et al., 2022)	Knowledge-intensiv
(GopherCite Menick et al., 2022), also WebGPT (Nakano et al., 2021)	Open-domain QA Long-form QA

What if we cannot train LMs for downstream tasks? (e.g., lack of computational resources / proprietary LM ... etc)

51

Downstream adaptation of retrieval-based LMs

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- General NLU
- Language Modeling & other generation tasks

ŀ	low to
_	Fine-tu Reinfo
	learnir
-	Prom

adapt?

uning prcement ng **pting**

What is data store?

- Wikipedia
- Web (Google / Bing Search Results)
- Training data

k-shot instances (k=0, 32 ... etc)

Q: what is the Ontario capital? A:

Prompting

Doesn't require LM training on tasks!

Training instances (demonstrations)

Test instances

Retrieval-based prompting

k-shot instances (k=0, 32 ... etc)

Q: who Is the US president A: Joe Biden

##

Q: What is the capital of US?

A: Washington DC.

##

Q: what is the Ontario capital? A:

54

Design choice of retrieval-based Prompting

Input s Incorp

Interm N/A

LM

Output space: Interpolate token probability distributions in output space

Input space:

Incorporate retrieved context in input space

Intermediate layers:

Design choice of retrieval-based Prompting

Input s Incorp

Interm N/A

Extending kNN-LM for downstream tasks

Output space: Interpolate token probability distributions in output space

Input space:

Incorporate retrieved context in input space

Intermediate layers:

kNN LM with fuzzy verbalizers for zero-/few-shot classification

Shi et al. 2022. "Nearest Neighbor Zero-shot Inference"

57

LM predicts next token

kNN predicts next tokens

		Nearest	P_{kNN}
Value v _i		k_i	- KIN IN
errible		great	0.4
jood	$\overline{\mathbf{A}}$	good	0.4
reat		terrible	0.2
		token	P_{LM}
_		great	0.2
		terrible	0.6
		good	0.1

The kNN token distributions are quite sparse!

token	P _{kNN} –LM
great	0.3
good	0.2
terrible	0.5

The kNN token distributions are quite sparse!

Fuzzy verbalizer maps token probability to target class labels

$$P_{FV}(y \mid x) \propto \sum_{v_i \in \mathcal{N}(v)} P(v_i \mid p(x))$$

Find similar tokens using GloVe & ConceptNet

Results on diverse classification tasks

Significant gains from **kNN-LM**

64

Results on diverse classification tasks

kNN-prompt largely outperforms vanilla LM in zero-shot classification

	Target task
ATLAS (Izacard et al., 2022)	Knowledge-intens
GopherCite (Menick et al., 2022)	Open-domain QA Long-form QA
kNN-prompt (Shi et al., 2022)	Classification

Retrieval-based LMs are effective in general NLU tasks!

Retrieval-based Prompting

Output space: Interpolate token probability distributions in output space

Input space: Incorporate retrieved context in input space

Intermediate layers:

(Shi et al., 2023; Ram et al., 2022; Mallen et al., 2022; Yu et al., 2022; Press et al., 2022; *inter alia*)

REPLUG (Shi et al., 2023; Section 3&4)

 ${\mathcal X}$ What is the capital of Ontario?

Toronto is in Canada. It is the capital city of the province of Ontario.

Retriever

X What is the capital of Ontario?

Retriever

Toronto is in Canada. It is the capital city of the province of Ontario.

Ontario is home to the nation's capital city, Ottawa, and the most populous city Toronto.

Top 10 documents

. . .

REPLUG (Shi et al., 2023; Section 3&4)

70

REPLUG (Shi et al., 2023; Section 3&4)

X What is the capital of Ontario?

Retriever

Toronto is in Canada. It is the capital city of the province of Ontario.

Ontario is home to the nation's capital city, Ottawa, and the most populous city Toronto.

Top 10 documents

. . .

REPLUG: Results on QA & MMLU

Large performance gain from base LM

REPLUG: Comparison with ATLAS

Outperforms ATLAS in fewshot, especially in MMLU

NQ

REPLUG: Comparison with ATLAS

ATLAS (Full / Transfer) outperforms REPLUG

NQ

74

Summary of downstream adaptations

	Targettask
ATLAS (Izacard et al., 2022)	Knowledge-intensiv
GopherCite (Menick et al., 2022)	Open-domain QA Long-form QA
kNN-prompt (Shi et al., 2022)	Classification
REPLUG (Shi et al., 2023)	Knowledge-intensiv

Benefit of retrieval**based** prompting

No training & strong performance

Hard to control, underperforming full FT model 75

Summary of downstream adaptations

	Targettask	Adaptation method	Datastore
ATLAS (Izacard et al., 2022)	Knowledge-intensive	Fine-tuning (Retriever & LM)	Wikipedia CC
GopherCite (Menick et al., 2022)	Open-domain QA, Long-form QA	Fine-tuning + RL (LM)	Google Search Results
kNN-prompt (Shi et al., 2022)	Classification	Prompting (output)	Wikipedia CC
REPLUG (Shi et al., 2023)	Knowledge-intensive	Prompting (input)	Wikipedia CC

What can be other types of datastores?

- 1		
	=	
	=	
		-

Retrieve code documentations about related functions

Zhou et al. 2023. "DocPrompting: Generating the Codes by Retrieving the Docs"

77

class PythonLexer

Retriever

class *Html*Formatter

A lexer splits the source into tokens, fragments ...

class **PythonLexer** For **Python** source code

Retriever

A formatter takes the token stream and writes it to an output file ...

class *Html*Formatter Format tokens as *HTML* 4 tags with ...

(x, y)

79

TLDR (NL -> bash)

Large gain given by DocPrompting for both CodeT5 & CodeX

CodeT5 + DocPrompting CodeX

+ DocPrompting

80

CoNaLA (NL \rightarrow Python)

Room for improvement in the retrieval component

Active research in OOD / Zero-shot retrieval! (BEIR; Thakur et al., 2021)

+ DocPrompting + DocPrompting (Oracle)

Summary of downstream adaptations

	Targettask	Adaptation method	Datastore
TLAS (Izacard et al., 2022)	Knowledge-intensive	Fine-tuning (Retriever & LM)	Wikipedia CC
SopherCite Menick et al., 2022)	Open-domain QA, Long-form QA	Fine-tuning + RL (LM)	Google Search Results
NN-prompt (Shi et al., 022)	Classification	Prompting (output)	Wikipedia CC
EPLUG (Shi et al., 2023)	Knowledge-intensive	Prompting (input)	Wikipedia CC
OcPrompting Zhou et al., 2023)	Code Generation	Fine-tuning (DS & LM), Prompting (Input)	Code documentations

 $\langle -$

G

20

R

How to adapt a retrieval-based LM for a task

Retrieval-based prompting is easy and simple; no need to train but has higher variance

Fine-tuning (+ RL) requires training but less variance & is completive with more data

How to adapt a retrieval-based LM for a task

Training a retriever on downstream tasks helps

Datastore can be diverse (also in Section 6) while challenges remain in OOD retrieval

84

Two key questions for downstream adaptations

How can we adapt a retrieval-based LM for a task?

When should we use a retrieval-based LM?

Long-tail

knowledge update

When to use a retrieval-based LM

Verifiability

Parameterefficiency

Long-tail

LLMs often struggle in long-tail/less frequent entities

Kandpal et al. 2023. "Large language models struggle to learn long-tail knowledge"

Key effectiveness in downstream tasks

Key effectiveness in downstream tasks

Long-tail

Performance on less popular questions (blue) doesn't improve over scale

Mallen* and Asai* et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories"

Scaling LLMs only helps for **popular knowledge;** for long tail, scaling gives marginal performance improvements

Long-tail

Retrieval gives large performance gain in such long-tail

Mallen* and Asai* et al. 2023. "When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories"

Key effectiveness in downstream tasks

Retrieval-in-context

GenRead BM25 Contriever

EntityQuestions

Key effectiveness in downstream tasks

Min et al. 2023. "Nonparametric Masked Language Modeling"; Petroni et al. 2019. "Language Models as Knowledge Bases?"

Retrieval gives large performance gain in such long-tail

Long-tail

Largely reduce hallucinations in long-form generations

Min et al. 2023. "FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation"⁹¹

Key effectiveness in downstream tasks

Update

evolving world knowledge

Temp LAMA

Cristiano Ronaldo plays for _X_. Real Madrid 2012 Cristiano Ronaldo plays for _X_. 2019 Juventus FC

Huge performance drop when test knowledge needs to be updated

Izacard et al. 2022. "Few-shot learning with retrieval augmented language models" Dhingra et al. 2022. "Time-Aware language models as temporal knowledge bases"

Key effectiveness in downstream tasks

Standard LLMs need to be **trained again** to adapt to

Update

Swapping the knowledge corpus to **accommodate** temporal changes without additional training.

Temp LAMA

2012	Cristiano Ronaldo plays for _X	Real Ma
2019	Cristiano Ronaldo plays for _X	Juventus

Swapping test datastore only retains strong performance

Izacard et al. 2022. "Few-shot learning with retrieval augmented language models" Dhingra et al. 2022. "Time-Aware language models as temporal knowledge bases"

Key effectiveness in downstream tasks

Parameterefficiency

much larger LMs in fact completions.

Retrieval + GPT-Neo 1.3B outperforms vanilla GPT3 on PopQA

Effectiveness of Parametric and Non-Parametric Memories"

Key effectiveness in downstream tasks

Much smaller LMs with retrieval can outperform

94

Parameterefficiency

much larger LMs in fact completions.

NPM (354 M) outperforms GPT-3 on T-Rex.

> Min et al. 2023. "Nonparametric Masked Language Modeling" Petroni et al. 2019. "Language Models as Knowledge Bases?"

Key effectiveness in downstream tasks

Much smaller LMs with retrieval can outperform

Parameterefficiency

much larger LMs in fact completions.

Room for improvements for diverse task adaptations!

Izacard et al. 2022. "Few-shot learning with retrieval augmented language models"

Key effectiveness in downstream tasks

Much smaller LMs with retrieval can outperform

Verifiability

Human and model can reliably assess the factuality of the generations using the retrieved evidence.

Why is it sometimes hard to eat after not eating for a while?

<

175B best-of-64

There are several reasons why not eating for long periods of time can make you lose your appetite. One is that not eating triggers the same response as starvation, adrenaline drives a process called lipolysis, which is the process your body undertakes when it wants to break down your fat reserves for energy, and also prevents you from burning through your muscle^{[1][3]}. Another reason is that not eating means your body doesn't get the sugars it needs to operate properly, which causes a process called gluconeogenesis^[2]. Also, leptin levels can rapidly decline in the fasted state^[4], which may cause an increase in appetite.

1. Why Don't You Feel Hungry After Not Eating For a Long

Why Don't You Feel Hungry After Not Eating For a Long

Why Don't You Feel Hungry After Not Eating For a Long 4. Fasting may change the body's hunger response - here's (www.diabetes.co.uk) 🗹

Key effectiveness in downstream tasks

>

Time? – Neuro (getneuro.com)
Time? - Neuro (getneuro.com)
Time? - Neuro (getneuro.com)
what to do about it - Diabetes

Nakano et al. 2021. "WebGPT: Browser-assisted question-answering with human feedback"

Attributions: AttributedQA (Bohnet et al., 2022)

Q: The population of Toronto is

Answer:

Bohnet et al. 2022. "Attributed Question Answering: Evaluation and Modeling for Attributed Large Language Models"

Expected Model Output

Attributions: AttributedQA (Bohnet et al., 2022)

Human Evaluation (AIS)

- 1. Are all (a,c) interpretable?
- 2. Is any information in a supported by c?

Automatic Evaluation (AutoAIS)

NLI model

$$E^{\mathsf{A}}[g] = rac{1}{n} \sum_{i=1}^{n} \mathsf{AutoAIS}(x_i, g(x_i))$$

AttributedQA (Bohnet et al., 2022)

Retrieval-based LM

Post-hoc retrieval

AttributedQA (Bohnet et al., 2022)

Retrieval in context yields higher AIS than post-hoc retrieval

When to use a retrieval-based LM

Long-tail

knowledge update

Verifiability

Parameterefficiency

When to use a retrieval-based LM

Khandelwal, et al. 2020. "Nearest Neighbor Zero-shot Inference"

Shi et al. 2022. "Nearest Neighbor Zero-shot Inference"

When to use a retrieval-based LM

Khandelwal, et al. 2020. "Nearest Neighbor Zero-shot Inference"

Shi et al. 2022. "Nearest Neighbor Zero-shot Inference"

Huang et al. 2023. "Privacy Implications of Retrieval-Based Language Models"

104