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This is only about “architecture” 
Section 4 will categorize & discuss “training"
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* REALM (Guu et al 2020): MLM followed by fine-tuning, focusing on open-domain QA 
* DPR (Karpukhin et al 2020): Pipeline training instead of joint training, focusing on open-domain QA 

(no explicit language modeling) 
* RAG (Lewis et al 2020): “Generative” instead of “masked language modeling”, focusing on open-

domain QA & knowledge intensive tasks (no explicit language modeling) 
* Atlas (Izcard et al 2022): Combine RAG with retrieval-based language model pre-training based on 

the encoder-decoder architecture (more to come in Section 4), focusing on open-domain QA & 
knowledge intensive tasks 

* Papers that follow this approach focusing on LM perplexity have come out quite recently (Shi et al. 
2023, Ram et al. 2023)

Ram et al. 2023. “In-Context Retrieval-Augmented Language Models” 
Shi et al. 2023. “REPLUG: Retrieval-Augmented Black-Box Language Models”
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Graphs from Ram et al. 2023

Retrieval helps over all sizes of LMs

Perplexity: The lower the better

Varying sizes of LMs
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Graphs from Ram et al. 2023

Shorter prefix (more recent tokens) as a query helps

but not too short
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How frequent should retrieval be?

Retrieval

LM

World Cup 2022 was the last with

The 2022 FIFA World Cup (...) 32 national teams 
involved in the tournament. World Cup 2022 

was the last with

32 teams before the increase

Retrieval

World Cup 2022 was the last with 32 teams 
before the increase

FIFA World Cup 2026 will expand to 48 teams. 
World Cup 2022 was the last with 32 teams, 

before the increase

to 48 in the 2026 tournament.

LM

Retrieval results from a new query explain them!
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Graphs from Ram et al. 2023

Retrieving more frequently helps
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Graphs from Ram et al. 2023

Retrieving more frequently helps

with cost in inference time
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- Input layer

- Intermediate layers

- Output layer

- Once

- Every n tokens (n>1)

- Every token
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

Applying the same approach to LM raised new questions 
which mattered less in prior work (e.g. REALM) with short inputs & short outputs
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

can be very inefficient to retrieve many text chunks, frequently



32

RETRO (Borgeaud et al. 2021)

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

Incorporation in the “intermediate layer” instead of the “input” layer 
 designed for many chunks, frequently, more efficiently→

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

Scale the datastore (1.8T tokens)

Incorporation in the “intermediate layer” instead of the “input” layer 
 designed for many chunks, frequently, more efficiently→

Borgeaud et al. 2021. “Improving language models by retrieving from trillions of tokens”
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RETRO (Borgeaud et al. 2021)

x = World Cup 2022 was the last with 32 teams, before the increase to
x1 x2 x3

LM 
Encoder

E1

E2

E3

(A  matrix)r × k × d
( # tokens per text chunk)r =
( hidden dimension)d =
( # retrieved chunks per split)k =

IndexRetrieval 
Encoder

x1

x2

x3

p1
1 . . . pk

1

p1
2 . . . pk

2

p1
3 . . . pk

3

(  chunks of text per split)k
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Regular decoder

EMB

x1

x2

x3

ATTN FFN
HEAD

Transformers blocks (xL)
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Decoder in RETRO

EMB

x1

x2

x3

ATTN CCA FFN
HEAD

Chunked Cross Attention (CCA)

RETRO blocks (xL)

E1 E2 E3
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Chunked Cross Attention

Outputs from the previous layer
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Chunked Cross Attention

Outputs from the previous layer



39

Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer
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40

Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Cross-attention can be computed in parallel

If  you generated until here

You get this

and go through this
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Chunked Cross Attention

Outputs from the previous layer Inputs to the next layer

Cross-attention can be computed in parallel

This part can be re-used

If  you generated until here
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Results

Significant improvements by retrieving from 1.8 trillion tokens

Perplexity: The lower the better
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Results

Significant improvements by retrieving from 1.8 trillion tokens

Perplexity: The lower the better
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Results

Gains are constant with model scale The larger datastore is, the better
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- Chunks 
- Tokens 
- Others

What to retrieve? How to use retrieval? When to retrieve?

- Input layer 
- Intermediate layers 
- Output layer

- Once 
- Every n tokens (n>1) 
- Every token
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- Chunks 
- Tokens 
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What to retrieve? How to use retrieval? When to retrieve?

- Input layer 
- Intermediate layers 
- Output layer

- Once 
- Every n tokens (n>1) 
- Every token
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- Chunks 
- Tokens 
- Others

What to retrieve? How to use retrieval? When to retrieve?

- Input layer 
- Intermediate layers 
- Output layer

- Once 
- Every n tokens (n>1) 
- Every token
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023) Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens



Summary

47

What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023) Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens



Summary

47

What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023) Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

Can use many blocks, more frequently, more efficiently



Summary

47

What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023) Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

Can use many blocks, more frequently, more efficiently

Additional complexity; Can’t be used without training (more in section 4)
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023) Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

What else?



kNN-LM (Khandelwal et al. 2020)

49Khandelwal et al. 2020. “Generalization through Memorization: Nearest Neighbor Language Models”
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A different way of using retrieval, where the LM outputs a 
nonparametric distribution over every token in the data.

Khandelwal et al. 2020. “Generalization through Memorization: Nearest Neighbor Language Models”
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A different way of using retrieval, where the LM outputs a 
nonparametric distribution over every token in the data.

Can be seen as an incorporation in the “output” layer

Khandelwal et al. 2020. “Generalization through Memorization: Nearest Neighbor Language Models”
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The size of the datastore = # of tokens in the corpus (>1B)

… Obama was senator for Illinois from 1997 to 
2005, …. Barack is Married to Michelle and their 
first daughter, … Obama was born in Hawaii, and 
graduated from Columbia University. … Obama is a 
native of Hawaii, ….
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Which tokens in a datastore are close to the next token?
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Which tokens in a datastore are close to the next token?

Which prefixes in a datastore are close to the prefix we have?

=
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Which tokens in a datastore are close to the next token?

Which prefixes in a datastore are close to the prefix we have?

=

Which vectors in a datastore are close to the vector we have?

=
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Which vectors in a datastore are close to the vector we have?
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Which vectors in a datastore are close to the vector we have?
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PkNN(y |x) ∝ ∑
(k,v)∈𝒟

𝕀[v = y]sim(k, x) sim(k, x) = exp (−d(Enc(k), Enc(x)))

distance function
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PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)

Later work, e.g., NPM (Min et al. 2023) removed interpolation (more in Section 4)
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PkNN−LM(y |x) = (1 − λ)PLM(y |x) + λPkNN(y |x)
: hyperparameterλ

Later work, e.g., NPM (Min et al. 2023) removed interpolation (more in Section 4)
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… poor … terrible

… nice

… affordable

… good

… bad

Training contexts Targets
10/10, would buy this cheap

Item delivered broken. Very cheap
To check the version of PyTorch, you can use torch

You are permitted to bring a torch
A group of infections … one of the torch

Dense vector space
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Training contexts Targets
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To check the version of PyTorch, you can use torch

You are permitted to bring a torch
A group of infections … one of the torch

Dense vector space

10/10, would buy this cheap
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… tool

… infection

… computer
… machine

… fire

Training contexts Targets
10/10, would buy this cheap

Item delivered broken. Very cheap
To check the version of PyTorch, you can use torch
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A group of infections … one of the torch

… pregnancy

Dense vector space
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… tool

… infection

… computer
… machine

… fire

Training contexts Targets
10/10, would buy this cheap

Item delivered broken. Very cheap
To check the version of PyTorch, you can use torch

You are permitted to bring a torch
A group of infections … one of the torch

… pregnancy

Dense vector space

… a group of infections … torch

PyTorch, you can use torch
… permitted to bring a torch
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kNN-LM
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Better with bigger datastoreOutperforms no-retrieval LM

No-retrieval LM

30x larger No-retrieval LM

kNN-LM

The lower the better
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Better with 
bigger k

Helps more
out-of-domain

Can use in-domain datastore 
even if parameters were not trained in-domain
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- Chunks 
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What to retrieve? How to use retrieval? When to retrieve?

- Input layer 
- Intermediate layers 
- Output layer

- Once 
- Every n tokens (n>1) 
- Every token
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REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

More fine-grained; Can be better at rare patterns & out-of-domain

Datastore is expensive in space: given the same data, # text chunks vs. # tokens

Can be very efficient (as long as kNN search is fast) (Wikipedia) 13M vs. 4B
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

More fine-grained; Can be better at rare patterns & out-of-domain

Datastore is expensive in space: given the same data, # text chunks vs. # tokens

Can be very efficient (as long as kNN search is fast)

No cross attention between input and retrieval results
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
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Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens
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What do retrieve? How to use retrieval? When to retrieve?

REALM (Guu et al 2020) Text chunks Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

It’s fixed! Can we do adaptively?
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Adaptive retrieval of 
text chunks 

(following retrieve-in-context)

Adaptive retrieval of 
tokens 

(following kNN-LM)
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FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Input: Generate a summary about Joe Biden.

Jiang et al. “Active Retrieval Augmented Generation”
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. 

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Jiang et al. “Active Retrieval Augmented Generation”
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. 

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Jiang et al. “Active Retrieval Augmented Generation”

I am confident!
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. 

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Jiang et al. “Active Retrieval Augmented Generation”

I am confident!
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. Joe Biden attended the University of Pennsylvania, 
where he earned a law degree.

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Jiang et al. “Active Retrieval Augmented Generation”
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. Joe Biden attended the University of Pennsylvania, 
where he earned a law degree.

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Jiang et al. “Active Retrieval Augmented Generation”

Unsure…
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. Joe Biden attended [mask], where he earned [mask].

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Jiang et al. “Active Retrieval Augmented Generation”

Unsure…
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. Joe Biden attended [mask], where he earned [mask].

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Jiang et al. “Active Retrieval Augmented Generation”

Unsure…
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Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. Joe Biden attended [mask], where he earned [mask].

FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Joe Biden 
At the University of Delaware in Newark, Biden … 
earned a Bachelor of Arts degree in 1965 with a 
double major in history and political science.

Jiang et al. “Active Retrieval Augmented Generation”

Unsure…
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FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. Joe Biden attended [mask], where he earned [mask].

Joe Biden 
At the University of Delaware in Newark, Biden … 
earned a Bachelor of Arts degree in 1965 with a 
double major in history and political science.

Jiang et al. “Active Retrieval Augmented Generation”

Unsure…
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FLARE (Jiang et al. 2023)

Retrieval (Datastore + Index)

Language Model

Input: Generate a summary about Joe Biden. 

Joe Biden (born November 20, 1942) is the 46th president of the 
United States. Joe Biden attended [mask], where he earned [mask]. 
He graduated from the University of Delaware in 1965 with a Bachelor 
of Arts in history and political science.

Joe Biden 
At the University of Delaware in Newark, Biden … 
earned a Bachelor of Arts degree in 1965 with a 
double major in history and political science.

Jiang et al. “Active Retrieval Augmented Generation”
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Adaptive retrieval of tokens
- Judge necessity
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Joe   Biden graduated from   the University   of    Delaware   .

retrieve retrieve retrieve retrieve retrieve retrieve retrieve

Joe   Biden graduated from   the University   of    Delaware   .

retrieve LM LM retrieve retrieve retrieve LM

He et al. 2021. “Efficient Nearest Neighbor Language Models”



Adaptive retrieval of tokens
- Judge necessity

82

Joe   Biden graduated from   the University   of    Delaware   .

retrieve retrieve retrieve retrieve retrieve retrieve retrieve

Joe   Biden graduated from   the University   of    Delaware   .

retrieve LM LM retrieve retrieve retrieve LM

PkNN−LM(y |x) = (1 − λ(x))PLM(y |x) + λ(x)PkNN(y |x)

He et al. 2021. “Efficient Nearest Neighbor Language Models”



Adaptive retrieval of tokens
- Judge necessity
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Joe   Biden graduated from   the University   of    Delaware   .

retrieve retrieve retrieve retrieve retrieve retrieve retrieve

Joe   Biden graduated from   the University   of    Delaware   .

retrieve LM LM retrieve retrieve retrieve LM

PkNN−LM(y |x) = (1 − λ(x))PLM(y |x) + λ(x)PkNN(y |x)
A function of the input x

     if  → λ = 0 λ < γ

He et al. 2021. “Efficient Nearest Neighbor Language Models”
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Adaptive retrieval of tokens
- Use local info

83Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.



Adaptive retrieval of tokens
- Use local info

84Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve



Adaptive retrieval of tokens
- Use local info

85Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve retrieve
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- Use local info

86Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve retrieve retrieve
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- Use local info

87Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve retrieve retrieve retrieve
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- Use local info

88Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve



Adaptive retrieval of tokens
- Use local info

89Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve pointer

pointer



Adaptive retrieval of tokens
- Use local info

90Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve pointer pointer

pointer



Adaptive retrieval of tokens
- Use local info

91Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Joe Biden graduated from  the  University  of  Delaware.
retrieve pointer pointer

pointer

pointer



Adaptive retrieval of tokens
- Use local info

91Alon et al. 2022. “Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval”

Training contexts Targets
At the

At the University
At the Universty of

At the University of Delaware
At the University of Delaware in

At the University of Delaware in Newark

Retrieve once, and save other searches!

Joe Biden graduated from  the  University  of  Delaware.
retrieve pointer pointer

pointer

pointer
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc)

Tokens Output layer Every n tokens 
(adaptive)
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc)

Tokens Output layer Every n tokens 
(adaptive)

More efficient
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc)

Tokens Output layer Every n tokens 
(adaptive)

More efficient Decision may not always be optimal
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks 

Text chunks 
Input layer Once

Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens

kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc)

Tokens Output layer Every n tokens 
(adaptive)

What else beyond text chunks and tokens?
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Entities as Experts (Fevry et al. 2020)

94

Dense vector space
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96Fevry et al. 2020. “Entities as Experts: Sparse Memory Access with Entity Supervision”

(Wikipedia) 
chunks: 13 millions 
tokens: 4 billions 

entities: 6 millions
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Need text with 
entity detected

Fevry et al. 2020. “Entities as Experts: Sparse Memory Access with Entity Supervision”

(Wikipedia) 
chunks: 13 millions 
tokens: 4 billions 

entities: 6 millions



Entities as Experts (Fevry et al. 2020)

96

Need text with 
entity detected

Fevry et al. 2020. “Entities as Experts: Sparse Memory Access with Entity Supervision”
Need entity linker

(Wikipedia) 
chunks: 13 millions 
tokens: 4 billions 

entities: 6 millions



Mention Memory (de Jong et al. 2022)
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One vector per entity  One vector per entity mention→

de Jong et al. 2022. “Mention Memory: 
incorporating textual knowledge into Transformers through entity mention attention”
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Mention Memory (de Jong et al. 2022)

98

One vector per entity  One vector per entity mention→

de Jong et al. 2022. “Mention Memory: 
incorporating textual knowledge into Transformers through entity mention attention”

(Wikipedia) 
chunks: 13M 
tokens: 4B 
entities: 6M 

entity mentions: 150M
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens
kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc) Tokens Output layer

Every n tokens 
(adaptive)

Entities as Experts (Fevry et al. 
2020), Mention Memory (de Jong 
et al. 2022)

Entities or entity 
mentions Intermediate layers Every entity mentions
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens
kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc) Tokens Output layer

Every n tokens 
(adaptive)

Entities as Experts (Fevry et al. 
2020), Mention Memory (de Jong 
et al. 2022)

Entities or entity 
mentions Intermediate layers Every entity mentions

Most effective for entity-centric tasks & space-efficient
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens
kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc) Tokens Output layer

Every n tokens 
(adaptive)

Entities as Experts (Fevry et al. 
2020), Mention Memory (de Jong 
et al. 2022)

Entities or entity 
mentions Intermediate layers Every entity mentions

Most effective for entity-centric tasks & space-efficient Additional entity detection required
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens
kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc) Tokens Output layer

Every n tokens 
(adaptive)

Entities as Experts (Fevry et al. 
2020), Mention Memory (de Jong 
et al. 2022)

Entities or entity 
mentions Intermediate layers Every entity mentions

All models retrieve from the external text
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens
kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc) Tokens Output layer

Every n tokens 
(adaptive)

Entities as Experts (Fevry et al. 
2020), Mention Memory (de Jong 
et al. 2022)

Entities or entity 
mentions Intermediate layers Every entity mentions

What else can we do with these models?
All models retrieve from the external text
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Wu et al. 2022. Memorizing Transformers (Figure source) 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 

Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval
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Wu et al. 2022. Memorizing Transformers (Figure source) 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 

Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval
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Wu et al. 2022. Memorizing Transformers (Figure source) 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 

Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval
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Wu et al. 2022. Memorizing Transformers (Figure source) 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 

Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval

Datastore is based on “input”
(instead of external text corpus)
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Wu et al. 2022. Memorizing Transformers (Figure source) 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 

Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval

Datastore is based on “input”
(instead of external text corpus)

kNN search incorporated in 
the attention layer
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Wu et al. 2022. Memorizing Transformers 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 
Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval (Figure source)
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Wu et al. 2022. Memorizing Transformers 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 
Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval (Figure source)

Chunked Cross Attention
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Wu et al. 2022. Memorizing Transformers 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 
Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval (Figure source)
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Wu et al. 2022. Memorizing Transformers 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 
Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval (Figure source)

Every chunk is assigned 
a similarity score
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Wu et al. 2022. Memorizing Transformers 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 
Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval (Figure source)

Top-k nearest neighbor search
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Wu et al. 2022. Memorizing Transformers 
Bertsch et al. 2023. Unlimiformer: Long-Range Transformers with Unlimited Length Input 
Rubin & Berant. 2023. Long-range Language Modeling with Self-retrieval (Figure source)

Fed into CCA
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What do retrieve? How to use retrieval? When to retrieve?
REALM (Guu et al 2020) Text chunks Input layer Once
Retrieve-in-context LM (Shi et al 
2023, Ram et al 2023)

Text chunks Input layer Every n tokens

RETRO (Borgeaud et al. 2021) Text chunks Intermediate layers Every n tokens
kNN-LM (Khandelwal et al. 2020) Tokens Output layer Every token

FLARE (Jiang et al. 2023) Text chunks Input layer Every n tokens 
(adaptive)

Adaptive kNN-LM (He et al 2021, 
Alon et al 2022, etc) Tokens Output layer

Every n tokens 
(adaptive)

Entities as Experts (Fevry et al. 
2020), Mention Memory (de Jong 
et al. 2022)

Entities or entity 
mentions Intermediate layers Every entity mentions

Wu et al. 2022, Bertsch et al. 2023, 
Rubin & Berant. 2023

Text chunks from 
the input Intermediate layers

Once or every n 
tokens
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Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?
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Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?

More frequent retrieval = better in performance, but slower
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110

Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)Intermediate layers 

(soft incorporation)

RETRO (Borgeaud et al. 2022)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?
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Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)Intermediate layers 

(soft incorporation)

RETRO (Borgeaud et al. 2022)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?

• Input layer: Simple but can be slower 
• Intermediate layers: More complex (need training) but can be designed to be more efficient
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Tokens
Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)kNN-LM (Khandelwal et al. 2020) Intermediate layers 

(soft incorporation)

RETRO (Borgeaud et al. 2022)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?
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Tokens
Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)kNN-LM (Khandelwal et al. 2020) Intermediate layers 

(soft incorporation)

RETRO (Borgeaud et al. 2022)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?

• Text blocks: Datastore can be space-efficient, more computation 
• Tokens: More fine-grained, compute-efficient, but datastore can be space-expensive
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Tokens
Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)kNN-LM (Khandelwal et al. 2020)

Jiang et al. 2023He et al. 2021, Alon et al. 2022

AdaptivelyAdaptively

Intermediate layers 
(soft incorporation)

RETRO (Borgeaud et al. 2022)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?

Adaptive retrieval can improve efficiency
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Tokens
Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)kNN-LM (Khandelwal et al. 2020)

Jiang et al. 2023He et al. 2021, Alon et al. 2022

Févry et al. 2020, 
de Jong et al. 2021

AdaptivelyAdaptively

Entities or 
entity mentions

Intermediate layers 
(soft incorporation)

RETRO (Borgeaud et al. 2022)

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?

Entities or entity mentions instead of every token or chunk
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Tokens
Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)kNN-LM (Khandelwal et al. 2020)

Jiang et al. 2023He et al. 2021, Alon et al. 2022

Févry et al. 2020, 
de Jong et al. 2021

AdaptivelyAdaptively

Entities or 
entity mentions

Intermediate layers 
(soft incorporation)

RETRO (Borgeaud et al. 2022)

Wu et al. 2022, Bertsch et al. 2023, Rubin & Brent, 2023

Retrieve its own input

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?

We can use a similar approach for long-sequence modeling
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Tokens
Every n tokens

REALM (Guu et al. 2020)

Retrieve-in-context 
(Ram et al. 2023, Shi et al. 2023)kNN-LM (Khandelwal et al. 2020)

Jiang et al. 2023He et al. 2021, Alon et al. 2022

Févry et al. 2020, 
de Jong et al. 2021

AdaptivelyAdaptively

Entities or 
entity mentions

Intermediate layers 
(soft incorporation)

RETRO (Borgeaud et al. 2022)

Wu et al. 2022, Bertsch et al. 2023, Rubin & Brent, 2023

Retrieve its own input

Text chunksWhat to 
retrieve? Input layer 

(concatenation)

How to use 
retrieval?

Once

When to 
retrieve?

Drozdov et al. 2022 

Soft adaptation for 
better expressivity

Min et al. 2023

Removing interpolation

Izcard et al. 2022

Use encoder-decoder to scale 
# of chunks to process

Verga et al. 2020
Extend to use 

fact triples
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Still largely under-explored!
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We didn’t cover anything about training  
Section 4!

We briefly saw some results but not extensively 
on downstream tasks  Section 5!

→

→

Wrapping up


