Section 3: Retrieval-based LM:Architecture

What to retrieve?

What to retrieve?

Text chunks (passages)?

What to retrieve?

Text chunks (passages)? Tokens?

What to retrieve?

Text chunks (passages)? Tokens? Something else?

What to retrieve? How to use retrieval?

Text chunks (passages)? Tokens? Something else?

Input LM

What to retrieve? How to use retrieval?

Text chunks (passages)? Tokens? Something else?

Input LM

What to retrieve? How to use retrieval?

Text chunks (passages)? Tokens? Something else?

Input LM

NE PIONIOE COMMENCE

What to retrieve? How to use retrieval?

Text chunks (passages)? Tokens? Something else?

Input LM

What to retrieve? How to use retrieval?

Text chunks (passages)? Tokens? Something else?

When to retrieve?

What to retrieve? How to use retrieval?

Text chunks (passages)? Tokens? Something else?

When to retrieve?

w/ retrieval The capital city of Ontario is Toronto.

How to use retrieval? What to retrieve?

Text chunks (passages)? Tokens? Something else?

When to retrieve?

What to retrieve?

Text chunks (passages)? Tokens? Something else?

What to retrieve? → Text chunks

Input layer (concatenation)

4

 \mathbf{x} = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

REALM (Guu et al 2020)

 \mathbf{x} = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

World Cup 2022 was ... the increase to [MASK] in 2026.

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

REALM (Guu et al 2020)

 \mathbf{x} = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

REALM (Guu et al 2020)

World Cup 2022 was ... the increase to [MASK] in 2026.

REALM (Guu et al 2020)

 \mathbf{x} = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

World Cup 2022 was ... the increase to [MASK] in 2026.

REALM (Guu et al 2020)

- \mathbf{x} = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.
 - FIFA World Cup 2026 will expand to 48 teams.
 - World Cup 2022 was ... the increase to [MASK] in 2026.

REALM (Guu et al 2020)

- \mathbf{x} = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.
 - FIFA World Cup 2026 will expand to 48 teams.
 - World Cup 2022 was ... the increase to [MASK] in 2026.

Retrieve stage

REALM (Guu et al 2020)

- **x** = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.
 - FIFA World Cup 2026 will expand to 48 teams.
 - World Cup 2022 was ... the increase to [MASK] in 2026.

Read stage

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

REALM: (I) Retrieve stage

FIFA World Cup 2026 will expand to 48 teams.

In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

Wikipedia 13M chunks (passages) (called *documents* in the paper)

REALM: (1) Retrieve stage

FIFA World Cup 2026 will expand to 48 teams.

In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

Encoder

Encoder

Encoder

Wikipedia 13M chunks (passages) (called *documents* in the paper)

 $\mathbf{z} = \text{Encoder}(z)$

REALM: (1) Retrieve stage

FIFA World Cup 2026 will expand to 48 teams.

In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

Encoder

Encoder

Encoder

Wikipedia 13M chunks (passages) (called *documents* in the paper) X = World Cup 2022 was ... the increase to [MASK] in 2026.

REALM: (1) Retrieve stage

FIFA World Cup 2026 will expand to 48 teams.

In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

Encoder

Encoder

Encoder

Wikipedia 13M chunks (passages) (called *documents* in the paper) X = World Cup 2022 was ... the increase to [MASK] in 2026.

 $\mathbf{x} = \text{Encoder}(x)$

REALM: (1) Retrieve stage

FIFA World Cup 2026 will expand to 48 teams.

In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

Encoder

Encoder

Encoder

Wikipedia 13M chunks (passages) (called *documents* in the paper)

REALM: (1) Retrieve stage

FIFA World Cup 2026 will expand to 48 teams.

In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

Encoder

Encoder

Encoder

Wikipedia 13M chunks (passages) (called *documents* in the paper)

$z_1, \ldots, z_k = \operatorname{argTop-}k(\mathbf{x} \cdot \mathbf{z})$ **k** retrieved chunks

[MASK] z_1 [SEP] x

[MASK] z_2 [SEP] $x \rightarrow b$

[MASK] z_k [SEP] x

[MASK] z_1 [SEP] x

[MASK] z_2 [SEP] $x \rightarrow b$

[MASK] z_k [SEP] x

- [MASK] z_1 [SEP] $x \rightarrow b$
- [MASK] z_2 [SEP] $x \rightarrow b$

[MASK] z_k [SEP] $x \rightarrow b$

REALM: (2) Read stage LM $P(y | x, z_1)$ $P(y | x, z_2)$ $P(y | x, z_k)$ Weighted average

 $\sum P(z \mid x)P(y \mid x, z)$

- [MASK] z_1 [SEP] x
- [MASK] z_2 [SEP] $x \rightarrow b$
- [MASK] z_k [SEP] x

REALM: (2) Read stage $P(y | x, z_1)$ $P(y | x, z_2)$ $P(y | x, z_k)$ LM LM Weighted average LM

 $\sum P(z \mid x)P(y \mid x, z)$

- $[MASK] z_1 [SEP] x \longrightarrow$
- [MASK] z_2 [SEP] $x \rightarrow b$
- [MASK] z_k [SEP] $x \rightarrow b$

REALM: (2) Read stage $P(y | x, z_1)$ $P(y | x, z_2)$ $P(y | x, z_k)$ LM LM Weighted average LM

 $\sum P(z \mid x)P(y \mid x, z)$

from the read stage

[MASK] z_1 [SEP] x

[MASK] z_2 [SEP] x

[MASK] z_k [SEP] x

Need to approximate from the $z \in \mathcal{D}$ \rightarrow Consider top k chunks only retrieve stage

REALM: (2) Read stage $P(y | x, z_1)$ LM $P(y \mid x, z_2)$ LM Weighted average $P(y | x, z_k)$ LM

 $P(z \mid x)P(y \mid x, z)$

from the read stage

- [MASK] z_1 [SEP] x
- [MASK] z_2 [SEP] x

[MASK] z_k [SEP] x

Need to approximate from the $z \in \mathcal{D}$ \rightarrow Consider top k chunks only retrieve stage

from the read stage

- Chunks
- Tokens
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

REALM (Guu et al 2020)

- When to retrieve?
- Once
- Every *n* tokens (n>1)
- Every token

- Tokens
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

REALM (Guu et al 2020)

- When to retrieve?
- Once
- Every *n* tokens (n>1)
- Every token

- Tokens
- Others

How to use retrieval?

- Input layer 🗸 - Intermediate layers
- Output layer

REALM (Guu et al 2020)

When to retrieve?

- Once
- Every *n* tokens (n>1)
- Every token

11

- Tokens
- Others

How to use retrieval?

- Input layer 🗸 - Intermediate layers
- Output layer

REALM (Guu et al 2020)

When to retrieve?

- Every *n* tokens (*n*>1) - Every token

* REALM (Guu et al 2020): MLM followed by fine-tuning on open-domain QA

- * REALM (Guu et al 2020): MLM followed by fine-tuning on open-domain QA
- * (no explicit language modeling)

DPR (Karpukhin et al 2020): Pipeline training instead of joint training, fine-tuned on open-domain QA

- * REALM (Guu et al 2020): MLM followed by fine-tuning on open-domain QA
- * DPR (Karpukhin et al 2020): Pipeline training instead of joint training, fine-tuned on open-domain QA (no explicit language modeling)
- * RAG (Lewis et al 2020): "Generative" instead of "masked language modeling", fine-tuned on opendomain QA & knowledge intensive tasks (no explicit language modeling)

- * REALM (Guu et al 2020): MLM followed by fine-tuning on open-domain QA
- * DPR (Karpukhin et al 2020): Pipeline training instead of joint training, fine-tuned on open-domain QA (no explicit language modeling)
- * RAG (Lewis et al 2020): "Generative" instead of "masked language modeling", fine-tuned on opendomain QA & knowledge intensive tasks (no explicit language modeling)
- * Atlas (Izcard et al 2022): Combine RAG with retrieval-based language model pre-training based on the encoder-decoder architecture (more to come in Section 4), fine-tuned on open-domain QA & other QA tasks

- * REALM (Guu et al 2020): MLM followed by fine-tuning on open-domain QA
- * (no explicit language modeling)
- * domain QA & knowledge intensive tasks (no explicit language modeling)
- * other QA tasks

For a while, mainly evaluated on knowledge-intensive tasks (e.g. open-domain QA) with fine-tuning (more context in Section 5)

DPR (Karpukhin et al 2020): Pipeline training instead of joint training, fine-tuned on open-domain QA

RAG (Lewis et al 2020): "Generative" instead of "masked language modeling", fine-tuned on open-

Atlas (Izcard et al 2022): Combine RAG with retrieval-based language model pre-training based on the encoder-decoder architecture (more to come in Section 4), fine-tuned on open-domain QA &

- * REALM (Guu et al 2020): MLM followed by fine-tuning, focusing on open-domain QA
- (no explicit language modeling)
- * domain QA & knowledge intensive tasks (no explicit language modeling)
- * knowledge intensive tasks
- * 2023, Ram et al. 2023)

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

* DPR (Karpukhin et al 2020): Pipeline training instead of joint training, focusing on open-domain QA

RAG (Lewis et al 2020): "Generative" instead of "masked language modeling", focusing on open-

Atlas (Izcard et al 2022): Combine RAG with retrieval-based language model pre-training based on the encoder-decoder architecture (more to come in Section 4), focusing on open-domain QA &

Papers that follow this approach focusing on LM perplexity have come out quite recently (Shi et al.

 \mathbf{x} = World Cup 2022 was the last with 32 teams, before the increase to

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

World Cup 2022 was the last with 32 teams, before the increase to

FIFA World Cup 2026 will expand to 48 teams.

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

x = World Cup 2022 was the last with 32 teams, before the increase to

* Can use multiple text blocks too (see the papers!)

World Cup 2022 was the last with 32 teams, before the increase to

- \mathbf{x} = World Cup 2022 was the last with 32 teams, before the increase to

 - * Can use multiple text blocks too (see the papers!)
- FIFA World Cup 2026 will expand to 48 teams. World Cup 2022 was the last with 32 teams, before the increase to

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

Retrieval helps over all sizes of LMs

Graphs from Ram et al. 2023

ls **q=x** necessary?

x = Team USA celebrates after winning its match against Iran at AI Thumama Stadium in Group B play of the FIFA World Cup 2022 on Nov. 29, 2022. (..) World Cup 2022 was the last with 32 teams, before the increase to

ls **q=x** necessary?

Team USA celebrates after winning its match against Iran at AI Thumama Stadium in Group B play of the FIFA World Cup 2022 on Nov. 29, 2022. (..) World Cup 2022 was the last with 32 teams, before the increase to

Retrieval

ls **q=x** necessary?

Is **q=x** necessary?

ls **q=x** necessary?

Team USA celebrates after winning its match against Iran at AI Thumama Stadium in Group B play of the FIFA World Cup 2022 on Nov. 29, 2022. (..) World Cup 2022 was the last with 32 teams, before the increase to

The U.S. national team defeated Iran 1-0.

Does not cover "tokens that will come next"

ls **q=x** necessary?

Team USA celebrates after winning its match against Iran at AI Thumama Stadium in Group B play of the FIFA World Cup 2022 on Nov. 29, 2022. (..) World Cup 2022 was the last with 32 teams, before the increase to

The U.S. national team defeated Iran 1-0.

Does not cover "tokens that will come next"

ls **q=x** necessary?

x = Team USA celebrates after winning its match against Iran at AI Thumama Stadium in Group B play of the FIFA World Cup 2022 on Nov. 29, 2022. (..) World Cup 2022 was the last with 32 teams, before the increase to

FIFA World Cup 2026 will expand to 48 teams.

Team USA celebrates after winning its match against Iran at AI Thumama Stadium in Group B play of the FIFA World Cup 2022 was the last with 32 teams, World Cup 2022 on Nov. 29, 2022. (..) World Cup 2022 before the increase to was the last with 32 teams, before the increase to Retrieval Retrieval The U.S. national team defeated Iran 1-0. FIFA World Cup 2026 will expand to 48 teams.

Does not cover "tokens that will come next" more relevant to what will come next

ls **q=x** necessary?

Shorter prefix (more recent tokens) as a query helps

Graphs from Ram et al. 2023

Retrieval Query Length (*l*)

Shorter prefix (more recent tokens) as a query helps

Graphs from Ram et al. 2023

How frequent should retrieval be?

21

How frequent should retrieval be?

World Cup 2022 was the last with

The 2022 FIFA World Cup (...) 32 national teams involved in the tournament.

21

How frequent should retrieval be?

World Cup 2022 was the last with

The 2022 FIFA World Cup (...) 32 national teams involved in the tournament. World Cup 2022 was the last with

How frequent should retrieval be?

Retrieval

How frequent should retrieval be?

Retrieval

World Cup 2022 was the last with 32 teams before the increase Retrieval FIFA World Cup 2026 will expand to 48 teams.

How frequent should retrieval be?

Retrieval

World Cup 2022 was the last with 32 teams before the increase Retrieval

FIFA World Cup 2026 will expand to 48 teams. World Cup 2022 was the last with 32 teams, before the increase

Graphs from Ram et al. 2023

GPT-2 1.5B (XL)

31.6	30.8	30.2	29.8	29.5
22.6	22.1	21.8	21.5	21.4
19.0	18.6	18.4	18.2	18.1
17.3	16.9	16.7	16.5	16.4
16	8	4	2	1

Retrieval Stride (s)

Retrieving more frequently helps

Graphs from Ram et al. 2023

Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)

What to retrieve?

- Tokens
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

- When to retrieve?
- Once
- Every n tokens (n>1)
- Every token

Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)

What to retrieve?

- Tokens
- Others

How to use retrieval?

- Input layer 🗸 - Intermediate layers
- Output layer

When to retrieve?

- Once
- Every n tokens (n>1)
- Every token

Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)

What to retrieve?

- Tokens
- Others

How to use retrieval?

- Input layer 🗸 - Intermediate layers
- Output layer

- When to retrieve?
- Once
- Every n tokens (n>1)
- Every token

Summary

	What do retrieve?	How to use retrieval?	When to retrieve?	
REALM (Guu et al 2020)	Text chunks	Input layer	Once	No.
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens	

Applying the same approach to LM raised new questions which mattered less in prior work (e.g. REALM) with short inputs & short outputs

Summary

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens

can be very inefficient to retrieve many text chunks, frequently

Borgeaud et al. 2021. "Improving language models by retrieving from trillions of tokens"

✓ Incorporation in the "intermediate layer" instead of the "input" layer \rightarrow designed for <u>many</u> chunks, <u>frequently</u>, more <u>efficiently</u>

Borgeaud et al. 2021. "Improving language models by retrieving from trillions of tokens"

 \rightarrow designed for <u>many</u> chunks, <u>frequently</u>, more <u>efficiently</u>

Borgeaud et al. 2021. "Improving language models by retrieving from trillions of tokens"

Incorporation in the "intermediate layer" instead of the "input" layer

 \mathbf{x} = World Cup 2022 was the last with 32 teams, before the increase to

$\begin{array}{c} \textbf{RETRO} \ (\textbf{Borgeaud et al. 2021}) \\ \textbf{\textit{x}} = \textbf{World Cup 2022 was the last with 32 teams, before the increase to} \\ \textbf{\textit{x}}_1 \qquad \textbf{\textit{x}}_2 \qquad \textbf{\textit{x}}_3 \end{array}$

(k chunks of text per split)

$$\mathbf{p}_1^1 \dots \mathbf{p}_1^k$$

 $\mathbf{p}_2^1 \dots \mathbf{p}_2^k$
 $\mathbf{p}_3^1 \dots \mathbf{p}_3^k$

(k chunks of text per split)

$\begin{array}{c} \textbf{RETRO} \text{ (Borgeaud et al. 2021)} \\ \textbf{\textit{x}} = \text{World Cup 2022 was the last with 32 teams, before the increase to} \\ \textbf{\textit{x}}_1 \quad \textbf{\textit{x}}_2 \quad \textbf{\textit{x}}_3 \end{array}$

(k chunks of text per split)

$\begin{array}{c} \textbf{RETRO} \text{ (Borgeaud et al. 2021)} \\ \textbf{\textit{x}} = \text{World Cup 2022 was the last with 32 teams, before the increase to} \\ \textbf{\textit{x}}_1 \quad \textbf{\textit{x}}_2 \quad \textbf{\textit{x}}_3 \end{array}$

(k chunks of text per split)

(A $r \times k \times d$ matrix)

(r = # tokens per text chunk)(d = hidden dimension)(k = # retrieved chunks per split)

Regular decoder

34

Chunked Cross Attention (CCA)

40

40

40

40

Cross-attention can be computed *in parallel*

41

Model	Retrieval Set	#Database tokens	#Database keys	Valid	Test
Adaptive Inputs (Baevski and Auli, 2019)	-	-	-	17.96	18.65
Spalm (Yogatama et al., 2021)	Wikipedia	3B	3B	17.20	17.60
kNN-LM (Khandelwal et al., 2020)	Wikipedia	3B	3B	16.06	16.12
Megatron (Shoeybi et al., 2019)	-	-	-	-	10.81
Baseline transformer (ours)	-	_	-	21.53	22.96
kNN-LM (ours)	Wikipedia	4B	4B	18.52	19.54
Retro	Wikipedia	4B	0.06B	18.46	18.97
Retro	C4	174B	2.9B	12.87	10.23
Retro	MassiveText (1%)	18B	0.8B	18.92	20.33
Retro	MassiveText (10%)	179B	4B	13.54	14.95
Retro	MassiveText (100%)	1792B	28B	3.21	3.92

Significant improvements by retrieving from 1.8 trillion tokens

Results

Perplexity: The lower the better

st

5 2

b

5

42

Model	Retrieval Set	#Database tokens	#Database keys	Valid	Test
Adaptive Inputs (Baevski and Auli, 2019)	-	-	-	17.96	18.65
Spalm (Yogatama et al., 2021)	Wikipedia	3B	3B	17.20	17.60
kNN-LM (Khandelwal et al., 2020)	Wikipedia	3B	3B	16.06	16.12
Megatron (Shoeybi et al., 2019)	-	-	-	-	10.81
Baseline transformer (ours)	-	-	-	21.53	22.96
kNN-LM (ours)	Wikipedia	4B	4B	18.52	19.54
Retro	Wikipedia	4B	0.06B	18.46	18.97
Retro	C4	174B	2.9B	12.87	10.23
Retro	MassiveText (1%)	18B	0.8B	18.92	20.33
Retro	MassiveText (10%)	179B	4 B	13.54	14.95
Retro	MassiveText (100%)	1792B	28B	3.21	3.92

Significant improvements by retrieving from 1.8 trillion tokens

Results

Perplexity: The lower the better

Gains are constant with model scale

Results

The larger datastore is, the better

43

RETRO (Borgeaud et al. 2021)

What to retrieve?

- Tokens
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

When to retrieve?

- Once
- Every *n* tokens (n>1)
- Every token

44

RETRO (Borgeaud et al. 2021)

What to retrieve?

- Tokens
- Others

- How to use retrieval?
- Input layer
- Intermediate layers
- Output layer

When to retrieve?

- Once
- Every *n* tokens (n>1)
- Every token

45

RETRO (Borgeaud et al. 2021)

What to retrieve?

- Tokens
- Others

- How to use retrieval?
- Input layer
- Intermediate layers 🗸
- Output layer

- When to retrieve?
- Once
- Every *n* tokens (n>1)- Every token

46

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens

47

	What do ret
REALM (Guu et al 2020)	Text chur
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chur
RETRO (Borgeaud et al. 2021)	Text chur

47

	What do ret
REALM (Guu et al 2020)	Text chur
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chur
RETRO (Borgeaud et al. 2021)	Text chur

Can use many blocks, more frequently, more efficiently

47

	What do ret
REALM (Guu et al 2020)	Text chur
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chur
RETRO (Borgeaud et al. 2021)	Text chur

Can use many blocks, more frequently, more efficiently

Additional complexity; Can't be used without training (more in section 4)

47

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens

What else?

48

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

49

✓ A different way of using retrieval, where the LM outputs a nonparametric distribution over every token in the data.

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

49

A different way of using retrieval, where the LM outputs a nonparametric distribution over every token in the data.

Khandelwal et al. 2020. "Generalization through Memorization: Nearest Neighbor Language Models"

49

Test Context	Target
Obama's birthplace is	?

50

Test Context	Target	Representation $q = f(x)$
Obama's birthplace is	?	

51

... Obama was senator for Illinois from 1997 to 2005, Barack is Married to Michelle and their first daughter, ... Obama was born in Hawaii, and graduated from Columbia University. ... Obama is a native of Hawaii,

Test Context x	Target	$\begin{array}{l} \textbf{Representation} \\ q = f(x) \end{array}$
Obama's birthplace is	?	

Training Contexts c_i	$\begin{array}{c} \text{Targets} \\ v_i \end{array}$
Obama was senator for Barack is married to Obama was born in	Michelle
 Obama is a native of	 Hawaii

... Obama was senator for Illinois from 1997 to 2005, Barack is Married to Michelle and their first daughter, ... Obama was born in Hawaii, and graduated from Columbia University. ... Obama is a native of Hawaii,

Test Context	Target	Representation $q = f(x)$
Obama's birthplace is	?	

The size of the datastore = # of tokens in the corpus (>1B)

Training Contexts c_i	$\begin{array}{c} {\rm Targets} \\ v_i \end{array}$
Obama was senator for Barack is married to Obama was born in	Michelle
 Obama is a native of	 Hawaii

... Obama was senator for Illinois from 1997 to 2005, Barack is Married to Michelle and their first daughter, ... Obama was born in Hawaii, and graduated from Columbia University. ... Obama is a native of Hawaii,

Test Context	Target	Representation $q = f(x)$
Obama's birthplace is	?	

Training Contexts	Targets	Representations
c_i	v_i	$k_i = f(c_i)$
Obama was senator for	Illinois	
Barack is married to	Michelle	
Obama was born in	Hawaii	
Obama is a native of	Hawaii	

Test Context	Target	Representation
x		q = f(x)
Obama's birthplace is	?	

Training Contexts	Targets	Representations
c_i	v_i	$k_i = f(c_i)$
Obama was senator for	Illinois	
Barack is married to	Michelle	
Obama was born in	Hawaii	
Obama is a native of	Hawaii	
Test Context	Target	Representation
x		q = f(x)
Obama's birthplace is	?	

Which tokens in a datastore are close to the next token?

Training Contexts Ci	$\begin{array}{c} \textbf{Targets} \\ v_i \end{array}$	Representations $k_i = f(c_i)$	
Obama was senator for Barack is married to Obama was born in 	Michelle		
Obama is a native of	Hawaii		V
Test Context x	Target	Representation $q = f(x)$	V
Obama's birthplace is	?		

Which tokens in a datastore are close to the next token?

Vhich prefixes in a datastore are close to the prefix we have?

54

Targ	rgets	R	epresen	tations
v	v_i		$k_i = f(c$	(i)
Illino	ois			
Mich	helle			
Haw	vaii			
f Haw	vaii			
Tar	rget] F	lepreser	ntation
			q = f(x))
;	?			
_				

Which tokens in a datastore are close to the next token?

Nhich prefixes in a datastore are close to the prefix we have?

Which vectors in a datastore are close to the vector we have?

Targets	Representations		Dist
v_i	$k_i = f(c_i)$		$d_i =$
Illinois		 	
Michelle		├ →	1
Hawaii			
Hawaii		┝─►	
		v_i <i>k_i</i> = $f(c_i)$ <i>lllinois</i> <i>Michelle</i> <i>Hawaii</i> 	v_i <i>Illinois</i> <i>Michelle</i> <i>Hawaii</i>

Test Context x	Target	Representation $q = f(x)$
Obama's birthplace is	?	

Targets	Representations		Dist
v_i	$k_i = f(c_i)$		$d_i =$
Illinois		 	
Michelle		├ →	1
Hawaii			
Hawaii		┝─►	
		v_i <i>k_i</i> = $f(c_i)$ <i>lllinois</i> <i>Michelle</i> <i>Hawaii</i> 	v_i <i>Illinois</i> <i>Michelle</i> <i>Hawaii</i>

Test Context x	Target	Representation $q = f(x)$
Obama's birthplace is	?	

Which vectors in a datastore are close to the vector we have?

57

Training Contexts	Targets	Representations		Dist
c_i	v_i	$k_i = f(c_i)$		$d_i =$
Obama was senator for	Illinois		┣_►	
Barack is married to	Michelle		┝─►	1
Obama was born in	Hawaii		┝╼╸	
Obama is a native of	Hawaii		┝╼╸	

Test Context	Target	Representation $a = f(a)$
x		q = f(x)
Obama's birthplace is	?	

Training Contexts	Targets <i>v_i</i>	Representations $k_i = f(c_i)$		Dist
Obama was senator for Barack is married to Obama was born in 	lllinois Michelle			
Obama is a native of	Hawaii		┝─►	

Test Context	Target	Representation
x		q = f(x)
Obama's birthplace is	?	

Training Contexts	Targets <i>v_i</i>	Representations $k_i = f(c_i)$		Dist
Obama was senator for Barack is married to Obama was born in 	lllinois Michelle			
Obama is a native of	Hawaii		┝─►	

Test Context	Target	Representation
x		q = f(x)
Obama's birthplace is	?	

Training Contexts	Targets <i>v_i</i>	Representations $k_i = f(c_i)$		Dist
Obama was senator for Barack is married to Obama was born in 	lllinois Michelle			
Obama is a native of	Hawaii		┝─►	

Test Context	Target	Representation
x		q = f(x)
Obama's birthplace is	?	

Training Contexts	Targets	Representations	Dist
c_i	v_i	$k_i = f(c_i)$	$d_i =$
Obama was senator for	Illinois		
Barack is married to	Michelle		1
Obama was born in	Hawaii		
Obama is a native of	Hawaii		
Test Context	Target	Representation	
x		q = f(x)	
Obama's birthplace is	?		

Training Contexts	Targets	Representations	Dist
c_i	v_i	$k_i = f(c_i)$	$d_i =$
Obama was senator for	Illinois		
Barack is married to	Michelle		1
Obama was born in	Hawaii		
Obama is a native of	Hawaii		
Test Context	Target	Representation	
x		q = f(x)	
Obama's birthplace is	?		

Targets	Representations		Dist
v_i	$k_i = f(c_i)$		$d_i =$
Illinois		┣_►	
Michelle		┝╼╸	
Hawaii		┝╼╸	
Hawaii		┝╼╸	
	- C	v_i $k_i = f(c_i)$ Illinois Michelle Hawaii 	v_i <i>lllinois</i> <i>Michelle</i> <i>Hawaii</i>

Test Context x	Target	Representation q = f(x)
Obama's birthplace is	?	

$P_{k\text{NN}-\text{LM}}(y \mid x) = (1 - \lambda)P_{\text{LM}}(y \mid x) + \lambda P_{k\text{NN}}(y \mid x)$

Later work, e.g., NPM (Min et al. 2023) removed interpolation (more in Section 4)

Targets	Representations		Dist
v_i	$k_i = f(c_i)$		$d_i =$
Illinois		┣_►	
Michelle		┝╼╸	
Hawaii		┝╼╸	
Hawaii		┝╼╸	
	- C	v_i $k_i = f(c_i)$ Illinois Michelle Hawaii 	v_i <i>lllinois</i> <i>Michelle</i> <i>Hawaii</i>

Test Context	Target	Representation $q = f(x)$
Obama's birthplace is	?	

$P_{k\text{NN}-\text{LM}}(y \mid x) = (1 - \lambda)P_{\text{LM}}(y \mid x) + \lambda P_{k\text{NN}}(y \mid x)$

Later work, e.g., NPM (Min et al. 2023) removed interpolation (more in Section 4)

Targets	Representations		Dist
v_i	$k_i = f(c_i)$		$d_i =$
Illinois		 	
Michelle		├ →	
Hawaii			
Hawaii		►	
	v _i Illinois Michelle Hawaii 	v_i $k_i = f(c_i)$ Illinois Michelle Hawaii 	v_i $k_i = f(c_i)$ Illinois Michelle Hawaii

Test Context	Target	Representation $q = f(x)$
Obama's birthplace is	?	

$P_{k\text{NN}-\text{LM}}(y \mid x) = (1 - \lambda)P_{\text{LM}}(y \mid x) + \lambda P_{k\text{NN}}(y \mid x)$

Later work, e.g., NPM (Min et al. 2023) removed interpolation (more in Section 4)

Targets	Representations		Dist
v_i	$k_i = f(c_i)$		$d_i =$
Illinois		 	
Michelle		├ →	
Hawaii			
Hawaii		►	
	v _i Illinois Michelle Hawaii 	v_i $k_i = f(c_i)$ Illinois Michelle Hawaii 	v_i $k_i = f(c_i)$ Illinois Michelle Hawaii

Test Context	Target	Representation $q = f(x)$
Obama's birthplace is	?	

Later work, e.g., NPM (Min et al. 2023) removed interpolation (more in Section 4)

 λ : hyperparameter

 $P_{k\text{NN}-\text{LM}}(y \mid x) = (1 - \lambda)P_{\text{LM}}(y \mid x) + \lambda P_{k\text{NN}}(y \mid x)$

kNN-LM - why?

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

60

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

•••

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Training contexts	Targets
10/10, would buy this	cheap
Item delivered broken. Very	cheap
To check the version of PyTorch, you can use	torch
You are permitted to bring a	torch
A group of infections one of the	torch

Outperforms no-retrieval LM

Outperforms no-retrieval LM

kNN-LM - results

Better with bigger datastore

Helps more out-of-domain

kNN-L

Can use in-domain datastore even if parameters were not trained in-domain

Helps more out-of-domain

What to retrieve?

- Chunks
- Tokens
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

When to retrieve?

- Once
- Every *n* tokens (n>1)
- Every token

What to retrieve?

- Chunks
- Tokens 🗸
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

When to retrieve?

- Once
- Every *n* tokens (n>1)
- Every token

What to retrieve?

- Chunks
- Tokens 🗸
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

When to retrieve?

- Once
- Every *n* tokens (n>1)
- Every token

What to retrieve?

- Chunks
- Tokens 🗸
- Others

How to use retrieval?

- Input layer
- Intermediate layers
- Output layer

- When to retrieve?
- Once
- Every *n* tokens (n>1)
- Every token 🗸

70

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

More fine-grained; Can be better at rare patterns & out-of-domain

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

More fine-grained; Can be better at rare patterns & out-of-domain Can be very efficient (as long as kNN search is fast)

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

More fine-grained; Can be better at rare patterns & out-of-domain Can be very efficient (as long as kNN search is fast)

Datastore is expensive in space: given the same data, # text chunks vs. # tokens

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

More fine-grained; Can be better at rare patterns & out-of-domain Can be very efficient (as long as kNN search is fast (Wikipedia) 13M vs. 4B

Datastore is expensive in space: given the same data, # text chunks vs. # tokens

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

More fine-grained; Can be better at rare patterns & out-of-domain Can be very efficient (as long as kNN search is fast)

Summary

Datastore is expensive in space: given the same data, # text chunks vs. # tokens

Extensions

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

Extensions

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

It's fixed! Can we do adaptively?

Adaptive retrieval for efficiency

Adaptive retrieval of text chunks (following retrieve-in-context)

Adaptive retrieval of tokens (following kNN-LM)

73

Input: Generate a summary about Joe Biden.

FLARE (Jiang et al. 2023)	.
Retrieval (Datastore + Index)	
Language Model	

74

Input: Generate a summary about Joe Biden.

Joe Biden (borr United States.

Jiang et al. "Active Retrieval Augmented Generation"

Joe Biden (born November 20, 1942) is the 46th president of the

75

Input: Generate a summary about Joe Biden.

Joe Biden (borr United States.

Jiang et al. "Active Retrieval Augmented Generation"

Joe Biden (born November 20, 1942) is the 46th president of the

Input: Generate a summary about Joe Biden.

Joe Biden (borr United States.

Jiang et al. "Active Retrieval Augmented Generation"

Joe Biden (born November 20, 1942) is the 46th president of the

Input: Generate a summary about Joe Biden.

Joe Biden (born November 20, 1942) is the 46th president of the United States. Joe Biden attended <u>the University of Pennsylvania</u>, where he earned <u>a law degree</u>.

77

Input: Generate a summary about Joe Biden.

Joe Biden (born November 20, 1942) is the 46th president of the United States. Joe Biden attended the University of Pennsylvania, where he earned <u>a law degree</u>.

Input: Generate a summary about Joe Biden.

Joe Biden (born November 20, 1942) is the 46th president of the United States. Joe Biden attended [mask], where he earned [mask].

Jiang et al. "Active Retrieval Augmented Generation"

Input: Generate a summary about Joe Biden.

Joe Biden (born November 20, 1942) is the 46th president of the United States. Joe Biden attended [mask], where he earned [mask].

Jiang et al. "Active Retrieval Augmented Generation"

Input: Generate a summary about Joe Biden.

Joe Biden (born November 20, 1942) is the 46th president of the United States. Joe Biden attended [mask], where he earned [mask].

At the University of Delaware in Newark, Biden ... earned a Bachelor of Arts degree in 1965 with a double major in history and political science.

Jiang et al. "Active Retrieval Augmented Generation"

Input: Generate a summary about Joe Biden.

Joe Biden (born November 20, 1942) is the 46th president of the United States. Joe Biden attended [mask], where he earned [mask].

At the University of Delaware in Newark, Biden ... earned a Bachelor of Arts degree in 1965 with a double major in history and political science.

Input: Generate a summary about Joe Biden.

Joe Biden (born November 20, 1942) is the 46th president of the United States. Joe Biden attended [mask], where he earned [mask]. He graduated from the University of Delaware in 1965 with a Bachelor of Arts in history and political science.

Joe Biden At the University of Delaware in Newark, Biden ... earned a Bachelor of Arts degree in 1965 with a double major in history and political science.

Joe Biden graduated from the University of Delaware .

retrieve retrieve retrieve retrieve retrieve retrieve Joe Biden graduated from the University of Delaware.

retrieve ret

retrieve LM LM retrieve retrieve retrieve LM Joe Biden graduated from the University of Delaware .

He et al. 2021. "Efficient Nearest Neighbor Language Models"

retrieve retrieve MANA MANA

retrieve LM LM retrieve retrieve LM Joe Biden graduated from the University of Delaware.

 $P_{kNN-LM}(y | x) = (1 - \lambda(x))P_{LM}(y | x) + \lambda(x)P_{kNN}(y | x)$

He et al. 2021. "Efficient Nearest Neighbor Language Models"

retrieve retrieve N N N N N

retrieve LM LM retrieve retrieve LM Joe Biden graduated from the University of Delaware.

 $P_{kNN-LM}(y \,|\, x) = (1 - \lambda(x))P_{LM}(y \,|\, x) + \lambda(x)P_{kNN}(y \,|\, x)$

He et al. 2021. "Efficient Nearest Neighbor Language Models"

A function of the input **x** $\rightarrow \lambda = 0$ if $\lambda < \gamma$

Training cont

At the University of

Joe Biden graduated from

texts	Targets
At	the
At the	University
he Universty	of
University of	Delaware
of Delaware	in
Delaware in	Newark

Training cont At th At the l At the University At the University of

retrieve Joe Biden graduated from the

texts	Targets
At	the
At the	University
he Universty	of
University of	Delaware
of Delaware	in
Delaware in	Newark

84

texts	Targets
At	the
At the	University
he Universty	of
University of	Delaware
of Delaware	in
Delaware in	Newark

texts	Targets
At	the
At the	University
he Universty	of
University of	Delaware
of Delaware	in
Delaware in	Newark

retrieve retrieve retrieve retrieve Joe Biden graduated from the University of Delaware.

texts	Targets
At	the
At the	University
he Universty	of
University of	Delaware
of Delaware	in
Delaware in	Newark

Training cont At th At the l At the University At the University of

retrieve Joe Biden graduated from the

texts	Targets
At	the
At the	University
he Universty	of
University of	Delaware
of Delaware	in
Delaware in	Newark

Training cont

At th At the At the University At the University of

Joe Biden graduated from the University

		_
texts	Targets	
At	the	>> pointer
At the	University	
he Universty	of	
University of	Delaware	
of Delaware	in	
Delaware in	Newark	

Training cont

At the University of

ret

Joe Biden graduated from the University of

		_
texts	Targets	
At	the	
At the	University	> pointer
he Universty	of	
University of	Delaware	
of Delaware	in	
Delaware in Newark		
trieve point	er pointer	•
m tha II	nivoraity	f

90

Training cont

At the University of At the Un

reti

Joe Biden graduated fro

		_
texts	Targets	
At	the	
At the	University	
he Universty	of	>> pointer
University of	Delaware	
of Delaware	in	
Delaware in	Newark	
trieve point m the U		pointer Delaware.

Training cont

At th At the U At the University At the University of

reti

Joe Biden graduated froi

Alon et al. 2022. "Neuro-Symbolic Language Modeling with Automaton-augmented Retrieval"

Targets	
the	
University	
of	> pointer
Delaware	pointer
in	
Newark	
	pointer f Delaware.
	the University of Delaware in Newark er pointer

Retrieve once, and save other searches!

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)

What else beyond text chunks and tokens?

Entities as Experts (Fevry et al. 2020)

94

Entities as Experts (Fevry et al. 2020)

94

Entities as Experts (Fevry et al. 2020)

94

94

94

94

One vector per entity \rightarrow One vector per entity mention

de Jong et al. 2022. "Mention Memory: incorporating textual knowledge into Transformers through entity mention attention"

de Jong et al. 2022. "Mention Memory: incorporating textual knowledge into Transformers through entity mention attention"

One vector per entity \rightarrow One vector per entity mention

What is the *[nationality]* of the *[hero]* who killed *[Medusa]*?

de Jong et al. 2022. "Mention Memory: incorporating textual knowledge into Transformers through entity mention attention"

One vector per entity \rightarrow One vector per entity mention

What is the *[nationality]* of the *[hero]* who killed *[Medusa]*?

de Jong et al. 2022. "Mention Memory: incorporating textual knowledge into Transformers through entity mention attention"

What is the *[nationality]* of the *[hero]* who killed *[Medusa]*?

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)
Entities as Experts (Fevry et al. 2020), Mention Memory (de Jong et al. 2022)	Entities or entity mentions	Intermediate layers	Every entity mentions

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)
Entities as Experts (Fevry et al. 2020), Mention Memory (de Jong et al. 2022)	Entities or entity mentions	Intermediate layers	Every entity mentions

Most effective for entity-centric tasks & space-efficient

2023, Ram et al 2023)Text chunksIntermediate layersEvery n tokensRETRO (Borgeaud et al. 2021)Text chunksIntermediate layersEvery n tokenskNN-LM (Khandelwal et al. 2020)TokensOutput layerEvery n tokensFLARE (Jiang et al. 2023)Text chunksInput layerEvery n tokens (adaptive)Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)TokensOutput layerEvery n tokens (adaptive)Entities as Experts (Fevry et al.Entities or entityEntities or entity		What do retrieve?	How to use retrieval?	When to retrieve?
2023, Ram et al 2023)Text chunksInput layerEvery n tokensRETRO (Borgeaud et al. 2021)Text chunksIntermediate layersEvery n tokenskNN-LM (Khandelwal et al. 2020)TokensOutput layerEvery tokenFLARE (Jiang et al. 2023)Text chunksInput layerEvery n tokensAdaptive kNN-LM (He et al 2021, Alon et al 2022, etc)TokensOutput layerEvery n tokens (adaptive)Entities as Experts (Fevry et al.Entities or entityEntities or entity	REALM (Guu et al 2020)	Text chunks	Input layer	Once
kNN-LM (Khandelwal et al. 2020)TokensOutput layerEvery tokenFLARE (Jiang et al. 2023)Text chunksInput layerEvery n tokens (adaptive)Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)TokensOutput layerEvery n tokens (adaptive)Entities as Experts (Fevry et al.Entities or entity		Text chunks	Input layer	Every n tokens
FLARE (Jiang et al. 2023)Text chunksInput layerEvery n tokens (adaptive)Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)TokensOutput layerEvery n tokens (adaptive)Entities as Experts (Fevry et al.Entities or entity	RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
FLARE (Jiang et al. 2023)Text chunksInput layer(adaptive)Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)TokensOutput layerEvery n tokens (adaptive)Entities as Experts (Fevry et al.Entities or entity	kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
Alon et al 2022, etc) Entities as Experts (Fevry et al. Entities or entity	FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens <i>(adaptive)</i>
Entities or entity		Tokens	Output layer	Every n tokens (adaptive)
et al. 2022), Mention Memory (de Jong et al. 2022)	2020), Mention Memory (de Jong	7	Intermediate layers	Every entity mentions

Most effective for entity-centric tasks & space-efficient

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens <i>(adaptive)</i>
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)
Entities as Experts (Fevry et al. 2020), Mention Memory (de Jong et al. 2022)	Entities or entity mentions	Intermediate layers	Every entity mentions

Summary

All models retrieve from the external text

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)
Entities as Experts (Fevry et al. 2020), Mention Memory (de Jong et al. 2022)	Entities or entity mentions	Intermediate layers	Every entity mentions

All models retrieve from the external text What else can we do with these models?

(instead of external text corpus)

(instead of external text corpus)

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)
Entities as Experts (Fevry et al. 2020), Mention Memory (de Jong et al. 2022)	Entities or entity mentions	Intermediate layers	Every entity mentions
Wu et al. 2022, Bertsch et al. 2023, Rubin & Berant. 2023	Text chunks from the input	Intermediate layers	Once or every n tokens

What to

retrieve?

More frequent retrieval = better in performance, but slower

- Input layer: Simple but can be slower

• Intermediate layers: More complex (need training) but can be designed to be more efficient

- Text blocks: Datastore can be space-efficient, more computation

• Tokens: More fine-grained, compute-efficient, but datastore can be space-expensive

Adaptive retrieval can improve efficiency

Entities or entity mentions instead of every token or chunk

Chat GPT E Perplexity WebGPT Extension

Chat GPT E Perplexity WebGPT **Extension**

Chat GPT E Perplexity WebGPT **Extension** Still largely under-explored!

We didn't cover anything about training → Section 4! We briefly saw some results but not extensively on downstream tasks → Section 5!