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great 
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“Hello” in French is LM Bonjourno Translation
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6



A language model (LM)

Often evaluated with 

7



A language model (LM)

Often evaluated with 

Perplexity

Toronto 
Ottawa 

Vancouver 
Montreal 

Calgary 
…

0.52
0.31

0.13
0.03

0.01

−log(0.52) = 0.284

7



A language model (LM)

Often evaluated with 

Perplexity

Toronto 
Ottawa 

Vancouver 
Montreal 

Calgary 
…

0.52
0.31

0.13
0.03
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−log(0.52) = 0.284

Downstream accuracy 
(Zero-shot or few-shot in-context learning,


or fine-tuning)

great 
terrible

LM
Cheaper than an iPod. It was

Prediction: positive

(More in Section 5) 7
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At least billions~trillions of tokens
Not labeled datasets

Not structured data (knowledge bases)
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: a similarity score between two pieces of textsim

Goal: find a small subset of elements in a datastore 
that are the most similar to the query

sim(i, j) = tfi,j × log
N
dfi# of occurrences of  in i j

# of docs containing i

# of total docs
Example

sim(i, j) = Encoder(i) ⋅ Encoder( j)
Maps the text into an -dimensional vectorh

Example

An entire field of 
study on how to get 

(or learn) the 
similarity function 

better
(We’ll see some in 

Section 4)
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: a similarity score between two pieces of textsim

Goal: find a small subset of elements in a datastore 
that are the most similar to the query

 elements from a datastorek

Can be a totally separate research area on 
how to do this fast & accurate
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Exact Search

Approximate Search
(Relatively easy to scale to ~1B elements)
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Index

LM

What do we 
retrieve?

What’s the query & 
when do we retrieve?

How do we
use retrieval?

We’ll answer these questions in Section 3!
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